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Abstract The accurate prediction for the emission ener-
gies of the phosphorescent Ir (III) complexes is very
useful for the realizing of full-color displays and large-
area solid-state lighting in OLED fields. Quantum
chemistry calculations based on TDDFT methods are
most widely used to directly compute the triplet vertical
excitation energies, yet sometimes the universality of
these calculations can be limited because of the lack
of experimental data for the relative family of structural
analogues. In this letter, 16 literature emission energies
at low temperature are linearly correlated with their
theore t ica l values computed by TDDFT using
exchange-correlation functionals containing various HF
exchange percentage with the relation of Eexp

em =1.2Ēcalc
em .

The relation is proven to be robust across a wide range
of structures for Ir (III) complexes. These theoretical
studies should be expected to provide some guides for
the design and synthesis of efficient emitting materials.
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Introduction

Iridium (III) complexes possessing good thermal stabilities,
microsecond excited-state lifetimes, and high luminescence
efficiencies have been extensively used as the emitting layers
in organic light-emitting diodes (OLEDs) [1–5]. Rationally
tuning the emission energy of Ir (III) complexes from blue
to red light over the entire visible range is a key step for the
realizing of full-color displays and large-area solid-state light-
ing in OLED fields. Experimentally, considerable effort has
been devoted to the design and synthesis of novel Ir com-
plexes that give efficient blue [6–11], green [12–17], and red
emissions [18–22]. The chemical modification of the coordi-
nating ligands either through the incorporation of electron
donating/withdrawing groups or extension of the π-
conjunction represents the most preferred strategy. However,
the general design rules to modify the emission energy remain
only partially filled and the determination of the desired
emission wavelength is often a process of trial and error,
companying with time-consuming synthetic procedure. Ideal-
ly one would like to predict with accuracy the emission energy
of a new compound before synthesis, so that the time and cost
can be greatly reduced.

There have been a number of recent studies where time-
dependent density functional theory (TDDFT) was used to
predict the emission energies or emission wavelengths of Ir
(III) complexes based on the transition of the ground state
S0→the lowest excited triplet state T1 (S0→T1 vertical exci-
tation energies) [23–28]. Generally, Ir (III) complexes with
metal-to-ligand charge-transfer character of the emissive state
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are typically charge-transfer (CT) compounds. It is well-
known that TDDFT method often yields errors in the excita-
tion energies of charge-transfer states [29, 30], and the better
calculated results may be reached by using exchange-
correlation (XC) functionals which include a mixture of exact
Hartree-Fock exchange [31]. However, there are no rules for
how much exact exchange should be included for a particular
system. Indeed, the HF exchange fraction is known to have a
significant role in the prediction of the emission energies with
TDDFT calculations [32–35]. For most cases, the selection of
XC functionals in TDDFT calculations on the emission ener-
gies is often based on the known experimental data. For
example, fac-tris (2-phenylpyridine) iridium fac-Ir (ppy) 3

with strong emission occurring in the range of 508–519 nm
[36, 37] in experiments has been extensively used in OLEDs
[38–43]. The predicted emission energies using TDDFT
method are highly dependent on the amount of HF exchange
incorporated in the XC functionals. As shown in Fig. 1, the
calculated values using TD-BMK functional are in good
agreement with the experimental data. Thus, TDDFT calcula-
tions with BMK functional are appreciated for predicting
emission energies of Ir (ppy) 3 and its derivatives. However,
on the other hand, it is difficult to choose the suitable XC
functionals if one wishes to predict a compound within the
related family of structural analogues for which no experi-
mental data is available in the literature.

In this paper, based on the published experimental data for
16 Ir complexes with reported emissionwavelengths from 388
to 688 nm (Fig. 2 and Table 1), the relationship between the
calculated emission energies and the experimental ones is
established with a relation of Eexp

em =1.2Ēcalc
em . Employing this

simple and efficient relation, we found that the agreement
between calculated and experimental energies was excellent.
Furthermore, a novel feature of our method is that we only
need to calculate emission energies (S0→T1 vertical excita-
tion energies) using XC functionals containing various HF
exchange percentage at the optimized T1 geometries, instead

of choosing the suitable XC functional based on the known
experimental data.

Computational methods

The lowest excited-state triplet geometry optimization of all
the Ir complexes was carried out using the B3LYP exchange-
correlation functional [51, 52]. A double-ξ quality LANL2DZ
basis set [53, 54] was employed for the Ir atom and a 6–31G*
type basis set [55] for the remaining atoms. The influence of
the basis set has been evaluated. For compounds investigated
herein, the calculated results generally decrease by 0.02–
0.07 eV when the basis set has been extended from 6-31G*
to 6–311++G**, indicating that the influence of the basis set is
limited (Table 1S, Supporting information). The TDDFT cal-
culations using the BLYP (0%HF) [56, 57], MPWLYP1M
(5%HF) [58], TPSSh (10%HF) [59], B3LYP* (15%HF)
[60], B3LYP (20%HF) [51, 52], PBE1PBE (25%HF) [61,
62], MPW1B95 (31%HF) [63], BMK (42%HF) [64], M06-
2X (54%HF) [65], and M06-HF (100%HF) [66] functionals
based on the optimized T1 geometries were performed to
obtain emission energies Ecalc

em . All calculations were per-
formed with the Gaussian 09 software package [67].

It is known that the environment parameters, such as sol-
vents, temperatures, and relaxation of geometry, can affect the
emission energies. To minimize the number of response vari-
ables, the reference experimental values were taken in this
paper from literature at low temperature (77 K and 90 K)
because in rigid matrix the confined conformation is better
mirrored to that of the optimized geometry in the gas phase.

Results

The nature of the lowest triplet state of all the complexes was
checked by the spin density surface. The corresponding results
have shown that the nature of the lowest triplet state is the
same with all the functionals. TDDFT calculations with dif-
ferent functionals were performed to obtain the vertical emis-
sion energies Ecalc

em of all the complexes in the gas phase and
the corresponding data are collected in Table 2, together with
the available experimental data. Here, solvent effects are not
taken into account since the reference data were taken from
the low temperatures where the geometry is frozen and the
solvent effect is limited; however, we have determined for test
cases that the differences are small (Table 2S, Supporting
information).

It is evident from Table 2 that the values of Ecalc
em for

each complex strongly depend on the HF exchange
amount. A general trend of all the complexes exhibits
the increased variations with the increase of the HF
exchange amount in emission energies. The poor

Fig. 1 Dependence of calculated emission energies of Ir (III) complex on
the HF% in TDDFT functionals, together with the experimental values
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correlations with experiment were observed at the first
glance. However, after further analysis of the data, a
very strong correlation between Ēcalc

em and Eexp
em can be

observed. Ēcalc
em denotes the average value of theoretical-

ly predicted emission energy obtained from ten XC

functionals for each complex. A plot of Ēcalc
em versus

Eexp
em displays the trend of increasing Ēcalc

em with increas-
ing emission energy, as shown in Fig. 3. A good fitting
line can be deduced in the plot in the following:

Eem
exp ¼ 1:2E

em

calc ð1Þ

Employing this relation, we recalculated the emission
energies of all studied Ir (III) complexes and found that
the calculated Ecalc

em is in good agreement with experi-
mental ones since the relative error is very small (<
7 %), as shown in Table 3. In addition, it is worthwhile
to notice that the ΔSCF approach [68–70] is also one
of the most popular methods to calculate emission en-
ergy. For comparison, ΔSCF results have been provided
in Table 2, and the detailed data are listed in Table 3S,
Supporting information. In our cases, it is can be seen
that ΔSCF method also successfully predicts the exper-
imental results in general. However, TDDFT gives the
better linear correlation than ΔSCF method (Fig. 1S,
Supporting information).

Our methodology is able to reproduce the experimen-
tal Eexp

em order for all the complexes studied, expect for
complexes 6 and 7, for which the emission energy
difference between them in experiment is very small.

Fig. 2 Molecular structures of
the Ir (III) complexes studied in
this study

Table 1 Experimental
emission energies at low
temperature for the
complexes studies

a In 2-MeTHF. b In
butyronitrile glass. c In
CH2Cl2-toluene (1:1v/v).
d In CH2Cl2.

e In PMMA
at 90 K

Complex Exptl

λem/nm Ref

1 388a [36]

2 412a [36]

3 445a [36]

4 454 a [36]

5 459 a [44]

6 465 a [36]

7 467b [45]

8 479 a [36]

9 491 a [36]

10 535 c [46]

11 548 d [47]

12 579 d [48]

13 610 e [49]

14 644 a [50]

15 664 a [50]

16 668 a [50]
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These predicted results are very excellent from a com-
putational standpoint considering the approximate nature
in the calculations, such as basis set and solvent model.
In order to further validate the application of our model,
more neutral Ir (III) complexes have been examined,
and satisfactory results were obtained (Table 4S,
Supporting information). Compared to TDDFT method
wherein the suitable XC functional must be carefully
selected based on the known experimental data, the
correlation obtained in this paper has the advantage that
it only needs TDDFT calculations using these ten XC
functionals to obtain the average emission energies. The
correlation should be independent of molecule structures
since these complexes are obtained from various

compounds. We believe that our method would give
confidence to reliably predict emission energy for the
unknown Ir (III) complexes across a wide range of
structures with acceptable accuracy prior to the prepara-
tion of these materials.

Table 2 Calculated Ecalc
em using various XC functionals and LANL2DZ/6-31G* basis set in the gas phase based on the optimized T1 geometries for all

the complexes ( in eV)

Complex BLYP
0%HF

MPWLYP1M
5%HF

TPSSH
10%HF

B3LYP*
15%HF

B3LYP
20%HF

PBE0
25%HF

MPW1B95
31%HF

BMK
42%HF

M06-2X
54%HF

M06-HF
100%HF

Averagea ΔSCF
Energyb

Exptl

1 2.4652 2.4891 2.4782 2.5293 2.515 2.475 2.617 2.7639 2.8672 3.1789 2.6379 2.9596 3.1959

2 2.2983 2.3373 2.3557 2.3987 2.3961 2.3654 2.5127 2.6562 2.7901 3.1615 2.5272 2.8088 3.0097

3 2.1772 2.2339 2.2591 2.3083 2.3052 2.2572 2.3932 2.5282 2.6007 2.8428 2.3906 2.6459 2.7865

4 2.1067 2.1816 2.2379 2.2844 2.2939 2.2562 2.3904 2.5306 2.6023 2.8526 2.3737 2.6083 2.7313

5 1.9934 2.0751 2.1914 2.2315 2.2766 2.2671 2.3981 2.5577 2.6454 2.9547 2.3591 2.4631 2.7015

6 2.0469 2.1035 2.1451 2.1886 2.1969 2.1554 2.2933 2.4238 2.512 2.8068 2.2872 2.4029 2.6667

7 2.0707 2.1326 2.1623 2.213 2.2119 2.156 2.301 2.423 2.5202 2.8016 2.2992 2.4398 2.6552

8 1.9910 2.0570 2.1190 2.1586 2.1785 2.1502 2.2831 2.4198 2.506 2.8179 2.2681 2.3763 2.5887

9 1.9285 2.0079 2.0917 2.1293 2.1592 2.141 2.2709 2.4124 2.4968 2.8165 2.2454) 2.3434 2.4125

10 1.5401 1.6335 1.736 1.8003 1.8652 1.8754 2.0525 2.3062 2.4669 3.0003 2.0276 2.1211 2.3178

11 1.5620 1.6587 1.7544 1.8255 1.8722 1.8382 2.0388 2.1692 2.4036 2.8434 1.9966 2.2742 2.2628

12 1.6751 1.6765 1.6367 1.6778 1.6552 1.5990 1.6887 1.7679 1.8131 1.9150 1.7105 1.8515 2.1416

13 1.4685 1.5374 1.5595 1.6244 1.6226 1.5557 1.7073 1.8217 1.9295 2.1856 1.7012 1.8346 2.0328

14 1.7027 1.679 1.6011 1.6279 1.5807 1.5064 1.5632 1.9009 1.5629 1.3935 1.6118 1.7426 1.9255

15 1.7078 1.6825 1.5884 1.6237 1.5715 1.4818 1.5499 1.918 1.5458 1.3523 1.6022 1.7349 1.8675

16 1.6787 1.6559 1.5651 1.5998 1.5483 1.4592 1.5291 1.5688 1.5362 1.3596 1.5501 1.7378 1.8563

a “Average” is the average of that columns for all XC functionals in the table. b The calculated emission energies are based onΔSCF method.

Fig. 3 Plot of Ēcalc
em versus Eexp

em for complexes 1–16

Table 3 Comparison of calculated emission wavelengths and
experimental ones for all the complexes (in nm)

Complex Calc A/Nm Exptl/Nm Relative error (%) b

1 392 388 1.0

2 409 412 0.7

3 432 445 2.9

4 435 454 4.2

5 438 459 4.6

6 452 465 2.8

7 449 467 3.9

8 456 479 4.8

9 460 490 6.1

10 510 535 4.7

11 518 548 5.5

12 604 579 4.3

13 607 610 0.5

14 641 644 0.5

15 645 664 2.9

16 667 668 0.1

a Calculated by 1.2Ēcalc
em . b Relative error between the calculated and

experimental emission.
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Conclusions

In short, a method for accurately predicting the emission
energies of neutral Ir (III) complexes on the basis of the
correlation of computed average emission energies using
TDDFT calculations with experimental emission energies
has been established. The obtained relation can be used to
predict emission energies for the unknown Ir (III) complexes
across a wide range of structures with acceptable accuracy.
These preliminary studies pave the way for designing and
tuning of promising emitting materials before beginning a
lengthy synthesis.
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